Problem 1.5

Determine the total charge transferred over the time interval of $0 \leq t \leq 10 \mathrm{~s}$ when $i(t)=\frac{1}{2} t \mathrm{~A}$.

Solution

Integrate both sides of the current equation with respect to time from 0 to 10 .

$$
\begin{aligned}
i(t) & =\frac{d q}{d t} \\
\int_{0}^{10} i(t) d t & =\int_{0}^{10} \frac{d q}{d t} d t \\
& =q(10)-q(0)
\end{aligned}
$$

Therefore, the charge transferred from $t=0$ to $t=10$ is

$$
\begin{aligned}
q(10)-q(0) & =\int_{0}^{10} i(t) d t \\
& =\int_{0}^{10} \frac{1}{2} t d t \mathrm{~A} \\
& =\left.\frac{t^{2}}{4}\right|_{0} ^{10} \mathrm{C} \\
& =\left(\frac{10^{2}}{4}-\frac{0^{2}}{4}\right) \mathrm{C} \\
& =25 \mathrm{C} .
\end{aligned}
$$

